|
公司基本資料信息
|
新聞新鄉(xiāng)弱電入地PE碳素管
MPP電力管用在車行道下直埋,不需構(gòu)筑混凝土保護(hù)層,能加快電纜工程建設(shè)進(jìn)度,降低施工費用。并且是經(jīng)過專門的設(shè)計能夠抵抗酸、堿、鹽、未經(jīng)處理的污水、腐蝕性土壤和地下水等眾多化學(xué)流體的侵蝕??稍诟邷佧}堿地帶使用。
弱電入地PE碳素管
采用一種新型的帶蒙皮FRP格柵,在其上澆筑混凝土制備橋面板。采用換算截面法推導(dǎo)了帶蒙皮FRP格柵-混凝土組合板截面在使用階段的截面有效抗彎剛度,并通過材料力學(xué)的方法推導(dǎo)了板件跨中撓度的計算公式。依據(jù)相關(guān)規(guī)范進(jìn)行帶蒙皮FRP格柵-混凝土組合橋面板的設(shè)計并給出設(shè)計實例及計算方法。驗算結(jié)果表明,帶蒙皮FRP格柵-混凝土橋面板應(yīng)用于混凝土-復(fù)合材料組合橋梁結(jié)構(gòu)較為可行。
MPP電力管比保護(hù)管的使用壽命長,其設(shè)計使用壽命達(dá)到50年以上。
新聞新鄉(xiāng)弱電入地PE碳素管
依據(jù)層層接結(jié)三維角聯(lián)鎖機(jī)織復(fù)合材料的結(jié)構(gòu)特點,建立能真實反映細(xì)觀結(jié)構(gòu)特征的大型精細(xì)實體幾何結(jié)構(gòu)模型;基于非彈性滯后能疲勞準(zhǔn)則,用有限元法計算三維角聯(lián)鎖機(jī)織復(fù)合材料在三點彎曲低周交變循環(huán)載荷下的變形和剛度降解,揭示疲勞過程中三維角聯(lián)鎖機(jī)織復(fù)合材料內(nèi)部應(yīng)力分布特征和變形特征,分析紗線與樹脂的機(jī)理,闡述該復(fù)合材料在循環(huán)載荷下發(fā)生疲勞的結(jié)構(gòu)效應(yīng)。結(jié)果表明,經(jīng)紗在疲勞過程中承擔(dān)大部分的載荷,且不同的組分呈現(xiàn)不同的擴(kuò)展過程。本文研究結(jié)果和研究方法將可進(jìn)一步擴(kuò)展至三維機(jī)織復(fù)合材料工程結(jié)構(gòu)設(shè)計。
MPP電力管具有良好的阻燃、耐熱抗凍性好-玻璃鋼電纜保護(hù)管可在-50℃—130℃長期使用而不變形 玻璃鋼電纜保護(hù)管為非磁性材質(zhì),無渦流損耗和電腐蝕、節(jié)能,適用于單芯電纜敷設(shè);載流量大,熱阻小,對電纜的正常運(yùn)行無任何不利影響。玻璃鋼電纜保護(hù)管管材有柔性,再配以撓性接頭,能抵御外界重壓和基礎(chǔ)沉降所引起的。MPP電力管光滑,無毛刺,穿纜輕松,不會刮傷電纜。玻璃鋼電纜保護(hù)管重量只有鋼管的1/4,混凝土管的1/10左右,運(yùn)輸及敷設(shè)施工簡捷方便。
PE碳素管
以興安落葉松(larix gmelini)40mm×65mm×4 000mm,40mm×90mm×4 000mm,40mm×140mm×4 000mm的Ⅰc和Ⅲc等級規(guī)格材為例,根據(jù)美國材料試驗協(xié)會ASTM D4761-05對試樣進(jìn)行抗彎強(qiáng)度測試,研究興安落葉松規(guī)格材抗彎強(qiáng)度在長寬比為18∶1時的長寬比尺寸效應(yīng)因數(shù).結(jié)果表明:興安落葉松規(guī)格材抗彎強(qiáng)度的長寬比尺寸效應(yīng)因數(shù)存在等級間差異;Ⅰc等級的長寬比尺寸效應(yīng)因數(shù)為0.43,Ⅲc等級的長寬比尺寸效應(yīng)因數(shù)與強(qiáng)度百分位數(shù)之間存在線性關(guān)系.
新聞新鄉(xiāng)弱電入地PE碳素管
簡要介紹了目前已有的FRP加固混凝土梁抗剪承載力的計算方法??紤]混凝土箱型梁斜裂縫的分布規(guī)律對FRP應(yīng)變分布的影響和腹板側(cè)移變形對FRP-混凝土界面粘結(jié)性能的弱化影響,給出了FRP抗剪加固混凝土箱型梁均有效應(yīng)變的確定方法,進(jìn)而提出了加固混凝土箱型梁FRP抗剪貢獻(xiàn)的計算方法,通過與試驗結(jié)果的對比,本文提出的計算方法的計算結(jié)果與試驗值吻合較好。
mpp管的連接方式為熱熔焊接,焊接口不好,會損傷電纜線或可能拉扁,所以MPP電力管必須用全新料來做。接頭連接,MPP開挖管、mpp直埋管可以采用接頭套接,可以節(jié)約施工費和施工工期。您可以根據(jù)工地現(xiàn)場的實際情況,采用適合您的mpp電力管連接方式。MPP電力管采用承插式專用接口連接。 CPVC電力管斷裂韌性:聚具有良好的快速裂紋增長斷裂韌性發(fā)生快速裂紋增長時,裂紋可以100~45m/s速度快速擴(kuò)展幾百米至十幾公里,造成長距離管路損壞,發(fā)生大規(guī)模泄漏事故,以及后續(xù)的#(輸天然氣)或洪水(輸水)事故。這種事故發(fā)生概率不大,一旦發(fā)生,危害極大。對塑料壓力管的發(fā)展來講,防止發(fā)生快速裂紋增長要求的重要性已經(jīng)超過了對長期壽命強(qiáng)度性能的要求。
新聞新鄉(xiāng)弱電入地PE碳素管
采用工業(yè)CT獲取瀝青混合料斷面掃描圖像,利用數(shù)字圖像處理方法將粗集料從圖像中分離,并解決了顆粒粘連問題,使粗集料顆粒成為單獨個體.確立了粗集料顆粒之間接觸的判定準(zhǔn)則,并設(shè)計5像素×5像素大小的窗格沿顆粒邊緣進(jìn)行接觸搜索.對640張斷面圖像遍歷處理后獲得的數(shù)據(jù)進(jìn)行定性分析,嘗試建立了接觸度指標(biāo)C.采用4種概率密度分布函數(shù)對C數(shù)據(jù)進(jìn)行擬合,并通過Kolmogorov-Smirnov及Chi-square 2種方法復(fù)合檢驗,終選定了對數(shù)正態(tài)分布來描述瀝青混合料內(nèi)部粗集料顆粒接觸特性.
對經(jīng)過不同碳化時間的混凝土進(jìn)行凍融循環(huán)試驗,測試其力學(xué)性能和微觀孔隙特征參數(shù),并提出混凝土內(nèi)部"孔隙曲折度"概念.結(jié)果表明:碳化對提高混凝土抗凍性具有恒定的促進(jìn)作用,碳化3~14d可使混凝土因凍融造成的動彈性模量下降量減少3%~12%;碳化使混凝土內(nèi)部孔隙曲折度增大;摻加粉煤灰可增大混凝土內(nèi)部孔隙曲折度,使侵蝕介質(zhì)的滲透路徑變長,進(jìn)而提高其抗凍性;引氣雖然也可提高混凝土抗凍性,但與其內(nèi)部孔隙曲折度的相關(guān)性較低,表明引氣和使用礦物摻和料對提高混凝土抗凍性的機(jī)理不同.