|
公司基本資料信息
|
新聞威海弱電入地PE給水管排水管
PE給水管材性能及特點:優(yōu)異的物理性能。采用的進口優(yōu)質(zhì)聚原料既有良好的剛性、強度,也有良好的柔性、耐蠕變性,而且更有熱熔連接性能優(yōu)良的特點,有利于塑料管道的安裝。耐腐蝕性,使用壽命長。
考查了不同表面處理工藝對碳纖維復合材料層間剪切強度及層面、斷面形貌的影響。通過材料實驗機測得碳纖維及其復合材料的拉伸強度和層間剪切強度,并通過掃描電鏡分析評價不同電導率對復合材料ILSS的影響。結果表明,12ms/cm是表面處理工藝中電導率的較優(yōu)選擇;碳纖維的層間剪切強度隨電量的變化符合"層進式物化雙效模型";制備高層間剪切強度碳纖維和復合材料時,較優(yōu)的電解質(zhì)是NaOH,較優(yōu)的電解液濃度為2%,較優(yōu)的電量為10C/g;本工藝條件下制得的SYT49碳纖維層面形貌與東麗T700G碳纖維相似。
在我國沿海地區(qū),地下水位偏高,土地適度大,使用無縫鋼管必須防腐,且壽命只有30年,而PE給水管可耐多種化學介質(zhì)的侵蝕,不需防腐處理。此外,它也不會促進藻類、細菌或生長,正常使用條件下使用壽命可長達50年。韌性、擾性好。PE給水管是一種高韌性管材、其斷裂伸長率超過500%,對基礎不均勻沉降和錯位的適應能力非常強,抗震性好,因此,適宜于有地震危險地區(qū)應用,世界各地的實踐證實PE給水管材是耐震性的管道。
新聞威海弱電入地PE給水管排水管
選擇了有代表性的5種長江口細砂進行級配、壓實特征、濕度特征、回彈模量的室內(nèi)和現(xiàn)場試驗.結果表明:長江口細砂粒徑較為單一,多在0.075~0.300mm之間,不均勻系數(shù)小于5;采用小型試筒重型擊實試驗可減小擊實對周邊壓實砂粒的擾動,且干密度測試結果高于大型試筒;擊實曲線呈現(xiàn)多峰特征,含泥量越低,駝峰數(shù)越多,對現(xiàn)場施工壓實控制更為有利;低填細砂路基在運營過程中受地下水影響較小,CBR強度和回彈模量與壓實度、含泥量相關性顯著,能滿足設計要求,且經(jīng)100萬次加載后無顯著衰減.
PE給水管排水管另外,PE給水管的擾性使PE管可以盤卷(尤其是管徑小的PE管),減少了大量連接管件。PE管的走向容易按照施工辦法的要求進行改變。在施工時,可在管子允許的彎曲半徑內(nèi)繞過障礙,降低施工難度。流通能力大,經(jīng)濟上合算。PE管光滑,不結垢。其內(nèi)表面當量粗糙比值是鋼管的1/20,相同管徑、相同長度、相同壓力下的PE給水管其流通能力要比鋼管大30%右,因此經(jīng)濟優(yōu)勢明顯。與金屬管道相比,PE給水管道可減少工程投資三分之一左右(直徑200毫米以上大管成本略高)。可盤卷的小口徑管材,可進一步降低工程造價。連接方便,施工簡便,方法多樣。PE給水管管體輕,搬運方便,焊接容易,焊接口少。當管線較長時使用盤卷敷設(一般指管徑小于63毫米)PE管要求遠比鋼管要求低。另外,可采用管沉入的方法在水底鋪設,大大降低了施工難度和工程費用。
新聞威海弱電入地PE給水管排水管
以回收瀝青路面材料(RAP)為主體,研究了水泥-粉煤灰(C-FA)和再生骨料2個體系之間的適應性.結果表明:隨著溫度的升高和加載的降低,RAP混合料的動態(tài)彈性模量隨之降低;當m_A/m_s為1/5~5/5,水泥摻量(分數(shù))為2%~6%,粉煤灰摻量(分數(shù))為5%~6%時,再生骨料和C-FA體系之間有較好的適應性;當m_A/m_S為2/5~3/5時,RAP混合料的軟化系數(shù)大于0.75,具有較好的水穩(wěn)定性.
采用彈性力學方法分析預張拉CFRP加固簡支梁的動力特性,研究各參數(shù)對加固梁自由振動特性的影響。首先將簡支梁和CFRP沿界面分開,基于二維彈性力學理論對梁進行動力學分析,利用弦理論對預張拉CFRP進行動力學分析,通過界面間應力和位移的連續(xù)條件方程,由行列式搜根法數(shù)值計算各階固有,數(shù)值結果與有限元軟件ANSYS進行了比較,顯示出了很好的一致性。研究表明,CFRP的加固效果隨層數(shù)和預拉力而增強。
采用不同大小的激勵電流,研究了單向連續(xù)碳纖維增強塑料(CFRP)從通電初期到穩(wěn)定階段的電壓響應規(guī)律。結果表明,當激勵電流≥300 m A時,在通電初期,試樣的電阻急劇減小,當通電時間達到100 s左右后,電阻逐漸趨于穩(wěn)定。激勵電流越大,其加載初期的電阻變化速度越快,其穩(wěn)定狀態(tài)下的電阻變化量也越大。在通電過程中CFRP試樣的溫度逐漸上升,其溫度變化曲線形狀與電阻的暫態(tài)響應曲線形狀基本相同,穩(wěn)定狀態(tài)下的溫升隨著激勵電流的增大而增大。實驗結果揭示了通電所引起的溫敏效應是形成CFRP暫態(tài)響應的主要原因。