新聞:襄樊電動(dòng)密集架圖片—智能密集柜
通過自行設(shè)計(jì)研制的試驗(yàn)裝置,對力環(huán)境下防水膜防水性能的損傷進(jìn)行了模擬試驗(yàn)研究.結(jié)果表明:防水膜厚度是決定其防水效果的主要因素;3mm厚的防水膜在工程實(shí)際中既能保證正常襯砌壓力下的不滲水,又能保證其具有優(yōu)越的力學(xué)性能;在襯砌壓力作用下,防水膜受損程度較無襯砌壓力作用時(shí)嚴(yán)重;基面有裂縫或凹凸不時(shí),防水膜防水性能沒有受到太大影響,但當(dāng)基面上出現(xiàn)易壓碎尖點(diǎn)時(shí),防水膜則嚴(yán)重受損;受拉及受剪狀況下防水膜的防水性能均遭受損傷.
密集柜的規(guī)格技術(shù)參數(shù):高度2300mm,節(jié)距900mm,寬度500mm,層數(shù)為6層,層距330㎜,每層擱板均勻承重80㎏、主要由20mm×20mm方鋼軌道、3.0mm底盤、1.5mm復(fù)柱立桿、1.0mm擱板、1.2mm側(cè)面板、1.0mm門板、旋動(dòng)機(jī)構(gòu)、防震裝置、防倒裝置、制動(dòng)裝置以及防塵、防鼠裝置、智能控制系統(tǒng)等部分組成。智能密集架(密集柜)集手動(dòng)、電動(dòng)、電腦控制于一體的智能化網(wǎng)絡(luò)密集架,可實(shí)現(xiàn)遠(yuǎn)距離操作,宏觀自動(dòng)化架體控制。
采用拉拉單向剪切疲勞測試評價(jià)了葉片用環(huán)氧結(jié)構(gòu)膠的疲勞性能,根據(jù)ISO 9664:1995,設(shè)定均應(yīng)力τm=0.35τR,為30Hz,振幅為2.0≤τa≤3.0MPa,測試環(huán)氧結(jié)構(gòu)膠疲勞次數(shù),S-N曲線并計(jì)算疲勞極限,研究膠層厚度、增韌劑及試樣形式等因素對疲勞性能的影響。本研究證明葉片用環(huán)氧結(jié)構(gòu)膠疲勞性能指標(biāo)對葉片設(shè)計(jì)和使用具有重要價(jià)值。
三種傳動(dòng)方式各自,互不影響。雙面操作面板更使對產(chǎn)品的操作隨心所欲、可以做到電動(dòng)開關(guān)每一列架體,在每列架體的面板上都裝有電機(jī)啟動(dòng)按鈕,當(dāng)管理人員需要打開任何一列架體,只要輕按開啟按鈕,架體就可自動(dòng)打開。如果停電的時(shí)候,也可以用手搖動(dòng)搖把,手動(dòng)開啟密集架、為方便的是智能密集柜安裝有我公司自主研發(fā)的智能軟件,軟件程序可安裝于檔案管理計(jì)算機(jī)中,在檔案存放時(shí)就在計(jì)算機(jī)中建立檔案管理的數(shù)據(jù)庫,在以后的管理過程中,只要在計(jì)算機(jī)管理界面輸入需要查詢的檔案,該檔案所在的密集架架體即可自動(dòng)打開。
在對比分析再生劑ZZ,RA-2,DN100,DN101紅外光譜的基礎(chǔ)上,將這4種再生劑按相同比例分別加入老化SBS改性瀝青中,通過紅外光譜分析、美國SHRP試驗(yàn)研究了再生SBS改性瀝青性能及微觀結(jié)構(gòu),并運(yùn)用界面活性理論解釋了SBS改性瀝青再生機(jī)理.結(jié)果表明:再生劑加入后,在瀝青質(zhì)與軟瀝青之間形成一層界,促進(jìn)聚合物大分子間或鏈段間的運(yùn)動(dòng),起到潤滑和增溶作用,從而使老化瀝青黏度減小,流變性能恢復(fù),低溫變形能力增強(qiáng).
(2)紅外線感應(yīng)保護(hù):智能型密集架的架體之間都安裝有紅外感應(yīng)系統(tǒng)。當(dāng)密集架被打開時(shí),紅外感應(yīng)自動(dòng)啟動(dòng),工作人員在架體間工作時(shí),密集架無論是電腦還是電機(jī)按鈕都無法啟動(dòng)合架,這樣防止其他工作人員不知其中有人隨意開合架體而夾傷工作人員,起到保護(hù)作用。
(3)電磁保護(hù):智能型密集架還安裝有電磁感應(yīng)系統(tǒng),如紅外感應(yīng)一樣,當(dāng)架體間有人時(shí),不能隨意開合其他架體,保護(hù)工作人員的.
采用不同強(qiáng)度等級的混凝土試件,通過快速凍融試驗(yàn)方法,對經(jīng)過凍融損傷的混凝土單軸受拉性能和劈拉性能進(jìn)行了試驗(yàn)研究,分析了凍融次數(shù)、混凝土強(qiáng)度等級對混凝土受拉性能的影響,建立了凍融后混凝土受拉峰值應(yīng)力與劈拉強(qiáng)度的關(guān)系.結(jié)果表明,隨著凍融循環(huán)次數(shù)的,混凝土的受拉力學(xué)性能和變形性能均呈明顯的下降趨勢;隨著混凝土強(qiáng)度等級提高,各性能指標(biāo)隨凍融循環(huán)次數(shù)的,下降趨于緩慢.